
International Journal of Scientific & Engineering Research, Volume 3, Issue 5, May-2012

 ISSN 2229-5518

Expeditious Scheduling for Precedence
Constraint Tasks in Grid

Joshua Samuel Raj, Daphne.S and Dr. V. Vasudevan

Abstract— The tremendous potential of grid computing is efficient scheduling, to exploit the computationally intense problems.

In the commonly used decentralized models, large scale scheduling implies time sequence constraints, which makes the

models intractable. To resolve this constraint, disintegration and cyclic scheduling are often applied to such scheduling which is

time consuming and introducing more complexities. The significance of this paper is marked by speed and efficiency that the

task-resource mapping in such a non-deterministic computing environment leads to concerns over scheduling problem to

minimize the expected makespan and delay in allocation of tasks thereby reduce the turnaround time for precedence-constraint

tasks imposed by application tasks to identify suitable resources. Our rigorous performance evaluation shows that our variant

Expeditious Matching algorithm generates schedules with smaller makespan and higher robustness compared with other

existing approach gratuitous to the new enhancement.

Index Terms— Grid computing, Job scheduling, Resource Matching, Makespan.

—————————— � ——————————

1 INTRODUCT ION

rid computing is a geographically distributed com-
puting that links virtual supercomputers of vast
amount of computing capacity through the Internet

to solve complex problems from e-Science in less time
than known before. In the past few years we have expe-
rienced how Grid computing has achieved a break-
through in physics, meteorology, medicine and other
computing fields. Grid computing is a technology that
enables resource virtualization, on-demand provisioning
and large scale resource sharing. Examples of such large-
scale applications are known from optimization, Colla-
borative/e-Science Computing, Data-Intensive Compu-
ting etc.

The purpose of job scheduling in this environment is
to balance the entire system load while completing all the
jobs at hand as soon as possible according to the envi-
ronment status [1-3]. In general, the objective of task
scheduling is to minimize the completion time of a paral-
lel application by properly mapping the tasks to the pro-
cessors. This paper describes about application models
that are dependent and precedence-constrained. The
problem of mapping (including matching and schedul-
ing) tasks and communications is a very important issue
since an appropriate mapping can truly exploit the paral-
lelism of the system thus achieving large speedup and
high efficiency [4]. It deals with assigning (matching)
each task to a machine and ordering (scheduling) the
execution of the tasks on each machine in order to mi-
nimize some cost function. The most common cost func-

tion is the total schedule length, or makespan.
The rest of the paper is structured as follows: related

works in section 2 which describes few decentralized
based scheduling models. And in section 3 detailed de-
scriptions about the proposed algorithm is given. Then in
section 4 the experimental setup is given. And section 5
ends the paper with the conclusion and future work.

2 RELATED WORKS

In the classical approach, which is also called list
scheduling [5, 6], the basic idea is to make an ordered list
of nodes by assigning them some priorities, and then
repeatedly execute the following two steps until a valid
schedule is obtained. First select from the list the node
with the highest priority for scheduling. Second select a
processor to accommodate this node. The priorities are
determined statically before the scheduling process be-
gins. In Dynamic Critical Path (DCP) algorithm [7] ex-
tends the list scheduling to avoid scheduling less impor-
tant nodes before the more important ones, node priori-
ties can be determined dynamically during the schedul-
ing process. The priorities of nodes are re-computed after
a node has been scheduled in order to capture the
changes in the relative importance of nodes. However
this can increase the complexity of the algorithm. The
HEFT algorithm [8, 9] is an application scheduling algo-
rithm for a bounded number of heterogeneous proces-
sors, which has two major phases: a task prioritizing
phase for computing the priorities of all tasks and a pro-
cessor selection phase for selecting the tasks in the order
of their priorities and scheduling each selected task on its
best processor, which minimizes the task's finish time.

However, the problem is that if the queue is fully

————————————————

• Daphne. S is with the Computer Science department, Karunya University,
India. E-mail: daphnesam7@gmail.com

• R. Joshua Samuel Raj is with the Computer Science department, Karunya
University, India. E-mail: joshuasamuelraj@gmail.com

• Dr.V. Vasudevan is the Director, Software Technologies Lab, TIFAC Core
in Network Engineering, Srivilliputhur, India

G

IJSER © 2012

http://www.ijser.org

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 2

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

loaded and workload is heavy, tasks might have to wait
in the queue for a very long time. In the extreme case,
starvation might occur. The Fastest Processor to Largest
Task First (FPLTF) [10] algorithm schedules tasks con-
cordant to the workload in the grid system. The algo-
rithm needs the selective information of CPU speed and
task workload. FPLTF works in two steps: one, the task
scheduler sort’s tasks and cut down CPU searching time.
Two, the scheduler assigns the largest task in the queue
to the fastest feasible resource node in the grid. Dynamic
Fastest Processor to Largest Task First (DFPLTF) [10, 11]
is extended from FPLTF. WQR (Work Queue with Repli-
cation) [12] is extended from the Work Queue (WQ) algo-
rithm [13].

WQR has an attribute such that a faster processor
will be assigning more tasks than a slower processor. In
the min-min algorithm [14], the minimum completion
time for each task is computed based on all the machines
characteristics. The task which corresponds to overall
minimum completion time is selected and assigned to
the respective machine. The newly mapped task is dis-
carded, and the process repeats until all tasks are allo-
cated with the resources. A schedule is considered effi-
cient if the schedule length is short and the number of
processors used is reasonable.

 In real world problems with precedence constraints,
for interpreting communication cost and processing time
as random variables, stochastic grid parallel applications
are considered by submitting users and generally inde-
pendent of each other, which request systems services
for their execution. The Stochastic Heterogeneous Earli-
est Finish Time (SHEFT) [15] aims to schedule the tasks
by assigning tasks to the machine that minimizes makes-
pan. During scheduling, the unscheduled task in the task
sequence is selected and scheduled on a machine that can
complete its execution with minimize approximate earli-
est finish time.

3 RESOURCE EXPEDITIOUS MATCHING

Generally, the scheduler assigns tasks to an appropri-
ate resource node for execution, and the resource nodes
with better performance would be assigned first. When
task loading is heavy and all resource nodes with better
performance are assigned, other tasks have to be as-
signed to the resource nodes with inferior performance.
Therefore, if a task is assigned to a resource node with-
out considering the performance factor, the overall ex-
ecution time will increase [10, 16]. To solve this problem,
a scheduling algorithm that searches for the proper re-
source for task execution based on the processing speed
of resources and computation time of tasks is proposed.

In this section we present our resources Expeditious
Matching (EM) method. Our proposal has two phases
they are initialization and expeditious matching phase.
Here we consider the bounded number of tasks which

has specific precedence constraint for their execution.

Before presenting the objective function, it’s essential
to define the expected finish time of task vi as Fi, CPU
utilization Ui and average execution cost as ci of task vi on
resources rj.

Expected 	inish time , �� = �(��) ��� (1)

where �(��) is the workload of the task vi and �� is the
expected processing speed for the task vi.

Idle time , �� = ����� !"#$
%�&'!()$* (2)

where ��_%�&'!()$ is the average period of tasks with no
load on rj and %�&'(()) is the average period of tasks with
load on rj.

CPU utilization, U� = 3�3&% 4546738�� 3894 − �� (3)

Average execution cost , 6� = ∑ �� ∗ 6A) �� (4)

where the computation cost per second on resources rj is
6A).

In the initialization phase, the characteristic of the
resources like processing speed and computation time
are analyzed based on the information stored in the Grid
Information Service (GIS). It’s a repository that maintains
and updates the details about the resources in the grid
environment. The table 1 shows an example of the Esti-
mated Resources Specification (ERS) table for resources
and their corresponding processing speed, Pj and the
average Resource computation Time (RCT) of resource j.
The Estimated Resources Specification (ERS) table is up-
dated in regular intervals of time to make sure that the
values in the table are not outdated.

In the Expeditious Matching phase, the tasks are
mapped to the available resources which are most ap-
propriate for that task. The Expeditious Matching algo-
rithm sorts the tasks based on the precedence constraints
assigned.

TABLE 1

Estimated Resources Specification (ERS)

Initialization phase: Performed to analyze the computa-

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 3

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

tional time of tasks, only when this scheduling algorithm
is first executed.

1 For each resource in the grid

2 Compute the average Resource Computa-
tion Time (RCT) using (Eq. 5) based on the
recent past history of the resource like
processing speed, workload etc.

3 Update the repository (ERS) with the com-
puted values.

4 Sort the resources in the decreasing order
based on the RCT

5 End for

Expeditious Matching phase

1 Sort the tasks based on the precedence con-
straint assigned

2 Do until there is any tasks in the queue

3 For each task vi

4 While vi is not assigned

5 If Pj has approximately equal processing
speed required and available space for vi

6 If vi has expected finish time, BC approx-
imately equal with the Resource Computa-
tion Time (RCT)

7 Perform the task and resource matching

8 End if

9 End if

10 If vi is not assigned to any of the resources

11 Perform the task and resource matching
to the resource which has the least RCT
value

12 End if

13 End while

14 For regular intervals of time, calculate the
Resource Computation Time (RCT) based on
the recent past history of the resource. And
update the repository (ERS) with the com-
puted values.

15 Sort the resources in the decreasing order
based on the RCT

16 End for

Fig. 1. Pseudo-code of Expeditious Matching (EM) algorithm

Consider a task’s resource requirement is specified as
1 GHz. Directly assign this task to a node with 1 GHz
processing speed is not good as the Resource Computa-
tion Time of that resource varies. Therefore, we have to
estimate the actual performance of an assignment using
RCT (Eq. 5). For a given task vi, define DC as the esti-
mated workload, EC as the processing speed requirement,
and Ui and Pj as the CPU utilization and processing

speed of resources rj, respectively.

 FGH(I, C) = (DJ KL⁄)
(N − OL)* (5)

Given that �(��) = 20,054 million instructions and Pi
= 2.4 GHz then RCT is 140s. Table 1 lists the RCT value
for each cluster of resources.

The resources are mapped if and only if a resource has
available space, approximately equal processing speed
and approximately equal Resource computation Time
which is expected for that task to execute.

Given a task with P(QC) = 20,540 million instructions
and EC = 2.4 GHz then expected finish time, BC as 100s.
From the values in table 1, we infer that the requirement
of the task do not match with any of the resource list. So
if this kind of exceptional condition arises then the
matching is done with the resource which has the least
RCT value.

The pseudo code of a newly proposed scheduling al-
gorithm is depicted in figure 1. The data in the Estimated
Resources Specification (ERS) table is used to match the
incoming tasks specification and the resource specifica-
tion. And for regular intervals of time, calculate the aver-
age Resource computation Time (RCT) based on the re-
cent past history of the resource. There by update the
repository (ERS) with the computed values and sort the
resources in the decreasing order based on the RCT.

4 PERFORMANCE EVALUATION

In this section, we compare the performance of our
Expeditious Matching (EM) algorithm with the well-
known scheduling SHEFT [15] algorithm in Grid sys-
tems.
We implemented our experiments by Grid Simulator
[17], a java-based discrete event grid simulation tool kit.
In the simulation, there are two phases.

The performances metric are makespan and schedul-
ing time ratio. Both the metric are essential and it’s ex-
amined in this paper since smaller the schedule more
efficient is the Grid system. The scheduling time ratio is
computed by dividing the parallel execution time (i.e.,
the makespan of the output schedule) by the sequential
execution time (i.e., cumulative execution time) as shown
in Eq. 6.

Scheduling time ratio =
makespan

∑ actual execution time (�T)
 (6)

4.1 Experimental Results
In our simulation experiments, the number of tasks

ranges between 500 to 4000 and 10 resource nodes are
considered. Every set of tasks for the above parameters
are generated based on the bounded number of tasks
with the precedence constraint. The processing speed of
resource node was assigned between the range 4000 to

International Journal of Scientific & Engineering Research

ISSN 2229-5518

150,000 MIPS. Other parameter of the model is the failure
rates of processors and links it’s assumed to be un
distributed between 1 * 10-3 and 1 * 10-4 failures/h
addition, the transmission rates of links are assumed to
be uniformly distributed between 10 and 100 Mbits/s.

We infer from figure 2 that the EM outperforms
SHEFT [15] in terms of the average makespan by 3
the 4000 number of tasks. Thus the proposed Expeditious
Matching algorithm shows efficiency when compared
with SHEFT [15].

Our EM algorithm is the fastest than the SHEFT [15]
algorithm and HEFT [8] algorithm is the slowest one
among the three, as shown in table 2. On average, the
algorithm is faster than the SHEFT algorithm by 55 pe
cent and the HEFT algorithm by 75 percent.

One of the reasons for efficient makespan is that, to
avoid recalculating it for similar kind of recourses,
update the values and store them for further
Then in task assignment, processing speed can be o
tained by a simple table look-up instead of recalculating
regarding all tasks.

Fig. 2. Performance of execution time ratio for 4000 scheduled jobs

Fig. 3. Average Communication time of scheduler and Resources

for 4000 scheduled jobs

TABLE 2

& Engineering Research Volume 3, Issue 3, March-2012

IJSER © 2012

http://www.ijser.org

150,000 MIPS. Other parameter of the model is the failure
rates of processors and links it’s assumed to be uniformly

failures/hour. In
addition, the transmission rates of links are assumed to
be uniformly distributed between 10 and 100 Mbits/s.

outperforms
age makespan by 35% for

number of tasks. Thus the proposed Expeditious
Matching algorithm shows efficiency when compared

algorithm is the fastest than the SHEFT [15]
] algorithm is the slowest one

the three, as shown in table 2. On average, the EM
algorithm is faster than the SHEFT algorithm by 55 per-

One of the reasons for efficient makespan is that, to
avoid recalculating it for similar kind of recourses, we

further iterations.
Then in task assignment, processing speed can be ob-

up instead of recalculating

scheduled jobs

Average Communication time of scheduler and Resources

Comparison of Scheduling Techniques

From figure 3, we infer that the scheduling
age communication time of scheduler and r
the jobs in our algorithm have a minimal time when
compared with the SHEFT algorithms courtesy to the
fact that the recalculation of tasks is reduced drastica
ly.

5 CONCLUSION AND FUTURE WORK

In this paper, the major concern in the computing
environment over scheduling is to minimize the expected
makespan and delays in allocation of tasks thereby r
duce the turnaround time. Our algorithm schedules the
tasks based on the best match of resource and tasks
the simple ERS table lookup instead of recalculating
all tasks with the precedence constraints.
cation tasks identify suitable resources.
the ERS table is expeditious based on recent history of
the computation. Also our rigorous performance evalu
tion shows that our variant Expeditious Matching
rates schedules with smaller makespan and higher r
bustness coupled with smaller scheduling time ratio
compared with other existing scheduling approaches.
the near future we plan to combine the intelligence of
colony for scalability in the existing algorithm. The pr
cedure can also be suitably be modified and applied to
any kind of Grid scheduling with different problem env
ronment to optimize any number of objectives concu
rently.

REFERENCES

[1] J Katia Leal., Eduardo Huedo., Ignacio M. Llorente.:

tralized model for scheduling independent tasks in Federated

Grids”. Future Generation Computer Systems 25 (8) (2009)

840–852.

[2] D. A. Reed.: “Grids, the TeraGrid, and Beyond

puter 36 (1) (2003) 62–68.

[3] J. Nabrzyski., J. M. Schopf., J. Weglarz.: “

agement: State of the Art and Future Trends

demic Publishers, 2003.

[4] J. Breckling., T. D. Braun., H. J. Siegel., N. Beck., L. Bolo

M.Maheswaran., A. I. Reuther., J. P. Robert

B. Yao.:“A taxonomy for describing matching and scheduling

heuristics for mixed-machine heterogeneous computing sy

tems. In Reliable Distributed Systems”, 1998. Proceedings. S

venteenth IEEE Symposium on, pages 330–

IN, 1998.

2012 4

Comparison of Scheduling Techniques

that the scheduling aver-
nication time of scheduler and resources of

the jobs in our algorithm have a minimal time when
compared with the SHEFT algorithms courtesy to the
fact that the recalculation of tasks is reduced drastical-

ORK

the major concern in the computing
to minimize the expected

makespan and delays in allocation of tasks thereby re-
Our algorithm schedules the

tasks based on the best match of resource and tasks using
f recalculating for

with the precedence constraints. Thus the appli-
. The updating of

the ERS table is expeditious based on recent history of
Also our rigorous performance evalua-

Expeditious Matching gene-
rates schedules with smaller makespan and higher ro-
bustness coupled with smaller scheduling time ratio
compared with other existing scheduling approaches. In
the near future we plan to combine the intelligence of ant
colony for scalability in the existing algorithm. The pro-
cedure can also be suitably be modified and applied to
any kind of Grid scheduling with different problem envi-
ronment to optimize any number of objectives concur-

Katia Leal., Eduardo Huedo., Ignacio M. Llorente.: “A decen-

tralized model for scheduling independent tasks in Federated

. Future Generation Computer Systems 25 (8) (2009)

Grids, the TeraGrid, and Beyond”. IEEE Com-

“Grid Resource Man-

agement: State of the Art and Future Trends”. Kluwer Aca-

T. D. Braun., H. J. Siegel., N. Beck., L. Boloni.,

. Reuther., J. P. Robertson., M. D. Theys.,

A taxonomy for describing matching and scheduling

machine heterogeneous computing sys-

, 1998. Proceedings. Se-

–335, West Lafayette,

International Journal of Scientific & Engineering Research Volume 3, Issue 3, March-2012 5

ISSN 2229-5518

IJSER © 2012

http://www.ijser.org

[5] G. Q. Liu., K. L. Poh., M. Xie.: “Iterative list scheduling for

heterogeneous computing”. J. Parallel Distrib. Comput.,

65(5):654–665, 2005.

[6] H. Topcuoglu., S. Hariri., M. Wu.: “Performance-Effective and

Low- Complexity Task Scheduling for Heterogeneous Compu-

ting”. IEEE Trans. Parallel and Distributed Systems, vol. 13,

no. 3, pp. 260–274, March 2002

[7] Y. K. Kwok., I. Ahmad.: “Dynamic critical-path scheduling:

An effective technique for allocating task graphs to multipro-

cessors”. IEEE Trans. Parallel Distrib. Syst., 7(5):506–521, 1996.

[8] G. C. Sih., E.A.Lee.: “A compile-time scheduling heuristic for

interconnection constrained heterogeneous processor architec-

tures”. IEEE Trans. Parallel Distrib. Syst., 4(2):175–187, 1993.

[9] Radulescu., A. J. C. Van Gemund.: “Fast and effective task

scheduling in heterogeneous systems”. In HCW ’00: Proceed-

ings of the 9th Heterogeneous Computing Workshop, page

229, Washington, DC, USA, 2000. IEEE Computer Society.

[10] D. Saha., D. Menasce., S. Porto, et al., “Static and dynamic

processor scheduling disciplines in heterogeneous parallel ar-

chitectures”, Journal of Parallel and Distributed Computing 28

(1) (1995) 1–18.

[11] D. Silva., W. Cirne., F. Brasileiro.: “Trading cycle for informa-

tion: using replication to scheduling bag of tasks application

on computational grids”, in: Proceeding in Ruro-Par, August

2003.

[12] S. Wang., I. Hsu., Z. Huang.: “Dynamic scheduling method for

computational grid environments”, in: Proceedings of the In-

ternational Conference on Parallel and Distributed Systems,

July 2005, pp. 22–28.

[13] Matei Ripeanu.: “Peer-to-peer architecture case study: Gnutella

network”, in: Proceedings First International Conference on

Peer-to-Peer Computing, August 2001, pp. 99–100.

[14] M. Maheswaran., S. Ali., H. Siegel., D. Hensgen,, Richard F.

Freund.: “Dynamic mapping of a class of independent tasks

onto heterogeneous computing systems”, Journal of Parallel

and Distributed Computing 59 (1999) 107–131.

[15] X. Tang., K. Li., G. Liao., R. Li.: “A stochastic scheduling algo-

rithm for precedence constrained tasks on Grid”. J.future gen-

eration computer sys. 2011.04.007.

[16] Ruay-Shiung Chang., Chun-Fu Lin., Jen-Jom Chen.: “Selecting

the most fitting resource for task execution”. Future Genera-

tion Computer Systems., 27 (2011) 227–231

[17] Anthony Sulistio., Uros Cibej., Srikumar Venugopal., Borut

Robic., Rajkumar Buyya.: “A Toolkit for Modelling and Simu-

lating Data Grids: An Extension to GridSim, Concurrency and

Computation: Practice and Experience (CCPE)”, Wiley Press,

New York, USA, Sep.2008.

Name:
R. Joshua Samuel Raj

Affiliation:
Assistant Professor / CSE
Karunya University

Brief Biographical History:
2005 -Graduated in 2005 from the Computer Science and Engineer-
ing Department from PETEC under Anna University
2007 -Received M.E Degree in Computer Science and Engineering
from Jaya College of Engineering under Anna University

 2009 Working towards the Ph.D degree in the area of Grid schedul-
ing under Kalasalingam University

Main Works:

Grid computing, Mobile Adhoc Networking, Multicasting and so

forth.

Name:
Daphne.S

Affiliation:
PG Scholar
Karunya University

Brief Biographical History:
2010 -Graduated in Computer Science and Engineering Department
from Karunya University
2012 - pursuing her M.Tech in Computer and Communication Engi-
neering from the department of Computer Science in Karunya Uni-
versity

Main Works:

Grid computing, Networking and so forth.

Name:
V. Vasudevan

Affiliation:
Director, Software Technologies Lab, TIFAC
Core in Network Engineering,
Srivilliputhur, India

Brief Biographical History:
1984- M.Sc in Mathematics and worked for several areas towards
Representation Theory
1992 Received his Ph.D. degree in Madurai Kamaraj University
2008- the Project Director for the Software Technologies Group of
TIFAC Core in Network Engineering and Head of the Department
for Information Technology in Kalasalingam University, Sirivilliputhur,
India

Main Works:
Grid computing, Agent Technology, Intrusion Detection system,
Multicasting and so forth.

